LEFTIST
LEFTIST(model, data=None, mode='time', backend='F', transform_name='straight', segmentator_name='uniform', learning_process_name='Lime', nb_interpretable_feature=10, nb_neighbors=1000, explanation_size=1)
Bases: FeatureAttribution
Local explainer for time series classification. Wrapper for LEFTIST from [1].
References
[1] Guillemé, Maël, et al. "Agnostic local explanation for time series classification." 2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI). IEEE, 2019.
Initization.
Arguments:
model_to_explain [torch.nn.Module, Callable, tf.keras.model]: classification model to explain.
data Tuple: Reference Dataset as Tuple (x,y).
mode str: Name of second dimension: time
-> (-1, time, feature)
or feat
-> (-1, feature, time)
backend str: TF, PYT or SK
transform_name str: Name of transformer
learning_process_name str: 'Lime' or 'Shap'
nb_interpretable_feature int: number of desired features
nb_neighbors int: number of neighbors to generate.
explanation_size int: number of feature to use for the explanations
explain(instance, idx_label=None, random_state=0)
Compute the explanation.
PARAMETER | DESCRIPTION |
---|---|
instance |
item to be explained. Shape :
TYPE:
|
idx_label |
index of label to explain. If None, return an explanation for each label.
TYPE:
|
random_state |
fixes seed
TYPE:
|
RETURNS | DESCRIPTION |
---|---|
List
|
Attribution weight |